67 research outputs found

    Efficient Monte Carlo sampling by parallel marginalization

    Full text link
    Markov chain Monte Carlo sampling methods often suffer from long correlation times. Consequently, these methods must be run for many steps to generate an independent sample. In this paper a method is proposed to overcome this difficulty. The method utilizes information from rapidly equilibrating coarse Markov chains that sample marginal distributions of the full system. This is accomplished through exchanges between the full chain and the auxiliary coarse chains. Results of numerical tests on the bridge sampling and filtering/smoothing problems for a stochastic differential equation are presented.Comment: 7 figures, 2 figures, PNAS .cls and .sty files, submitted to PNA

    The Brownian fan

    Full text link
    We provide a mathematical study of the modified Diffusion Monte Carlo (DMC) algorithm introduced in the companion article \cite{DMC}. DMC is a simulation technique that uses branching particle systems to represent expectations associated with Feynman-Kac formulae. We provide a detailed heuristic explanation of why, in cases in which a stochastic integral appears in the Feynman-Kac formula (e.g. in rare event simulation, continuous time filtering, and other settings), the new algorithm is expected to converge in a suitable sense to a limiting process as the time interval between branching steps goes to 0. The situation studied here stands in stark contrast to the "na\"ive" generalisation of the DMC algorithm which would lead to an exponential explosion of the number of particles, thus precluding the existence of any finite limiting object. Convergence is shown rigorously in the simplest possible situation of a random walk, biased by a linear potential. The resulting limiting object, which we call the "Brownian fan", is a very natural new mathematical object of independent interest.Comment: 53 pages, 2 figures. Formerly 2nd part of arXiv:1207.286

    Fast randomized iteration: diffusion Monte Carlo through the lens of numerical linear algebra

    Full text link
    We review the basic outline of the highly successful diffusion Monte Carlo technique commonly used in contexts ranging from electronic structure calculations to rare event simulation and data assimilation, and propose a new class of randomized iterative algorithms based on similar principles to address a variety of common tasks in numerical linear algebra. From the point of view of numerical linear algebra, the main novelty of the Fast Randomized Iteration schemes described in this article is that they work in either linear or constant cost per iteration (and in total, under appropriate conditions) and are rather versatile: we will show how they apply to solution of linear systems, eigenvalue problems, and matrix exponentiation, in dimensions far beyond the present limits of numerical linear algebra. While traditional iterative methods in numerical linear algebra were created in part to deal with instances where a matrix (of size O(n2)\mathcal{O}(n^2)) is too big to store, the algorithms that we propose are effective even in instances where the solution vector itself (of size O(n)\mathcal{O}(n)) may be too big to store or manipulate. In fact, our work is motivated by recent DMC based quantum Monte Carlo schemes that have been applied to matrices as large as 10108×1010810^{108} \times 10^{108}. We provide basic convergence results, discuss the dependence of these results on the dimension of the system, and demonstrate dramatic cost savings on a range of test problems.Comment: 44 pages, 7 figure

    Sharp entrywise perturbation bounds for Markov chains

    Full text link
    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations
    • …
    corecore